CONCOURS DE RECRUTEMENT

D'ELEVES PILOTE DE LIGNE

ANNEE 2018

EPREUVE DE MATHEMATIQUES

Partie I

Question 1:

- A) FAUX
- B) FAUX
- C) VRAI
- D) FAUX

Explication 1 : Soit I l'un des trois intervalles $]-\infty,-1[,]-1,1[$ ou $]1,+\infty[$. Les solutions de (E_h) sur I constituent un \mathbb{R} -espace vectoriel de dimension 1 par continuité sur I de \mathfrak{a} : $x \mapsto -\frac{2x}{1-x^2}$.

Les solutions de (E_h) sur V constituent un \mathbb{R} -espace vectoriel, plus nécessairement de dimension 1.

$$(1-x^2) \times (1-x^2)' - 2x(1-x^2) = -4x(1-x^2) \neq 0$$
. Donc A) est faux.

$$(1-x^2) \times (1+x^2)' - 2x(1+x^2) = 2x(1-x^2-1-x^2) = -4x^3 \neq 0$$
. Donc B) est faux.

$$(1-x^2) \times \left(\frac{1}{1-x^2}\right)' - 2x\left(\frac{1}{1-x^2}\right) = (1-x^2)\frac{2x}{(1-x^2)^2} - \frac{2x}{1-x^2} = 0$$
. Donc C) est vrai.

$$(1-x^2) \times (-\ln(1-x^2))' - 2x(-\ln(1-x^2)) = 2x + 2x\ln(1-x^2) \neq 0$$
. Donc D) est faux.

- D) VRAI

Explication 2: f est une solution de (E_h) sur V si et seulement si les restrictions de f à $]-\infty,-1[,]-1,1[$ et $]1,+\infty[$ sont solutions sur chacun de ces intervalles ce qui équivaut à l'existence de $(C_1, C_2, C_3) \in \mathbb{R}^3$ tel que pour tout x de V,

$$\begin{split} f(x) = \left\{ \begin{array}{l} C_1/\left(1-x^2\right) \, \operatorname{si} \, x < -1 \\ 0 \, \operatorname{si} \, x = -1 \\ C_2/\left(1-x^2\right) \, \operatorname{si} \, -1 < x < 1 \\ 0 \, \operatorname{si non} \end{array} \right. \\ = C_1 \left\{ \begin{array}{l} 1/\left(1-x^2\right) \, \operatorname{si} \, x < -1 \\ 0 \, \operatorname{sinon} \end{array} \right. \\ + C_2 \left\{ \begin{array}{l} 1/\left(1-x^2\right) \, \operatorname{si} \, -1 < x < 1 \\ 0 \, \operatorname{sinon} \end{array} \right. \\ + C_3 \left\{ \begin{array}{l} 1/\left(1-x^2\right) \, \operatorname{si} \, x > 1 \\ 0 \, \operatorname{sinon} \end{array} \right. \\ \end{array} \right. \end{split}$$

$$\begin{split} \text{L'ensemble des solutions est Vect} \left(f_1, f_2, f_3\right) \text{ où pour tout } x \in V, \ f_1(x) = \left\{ \begin{array}{l} 1/\left(1-x^2\right) \ \text{si } x < -1 \\ 0 \ \text{si } x \geqslant -1 \end{array} \right. , \\ f_2(x) = \left\{ \begin{array}{l} 1/\left(1-x^2\right) \ \text{si } x < 1 \\ 0 \ \text{sinon} \end{array} \right. \\ \text{et } f_3(x) = \left\{ \begin{array}{l} 1/\left(1-x^2\right) \ \text{si } x > 1 \\ 0 \ \text{sinon} \end{array} \right. . \end{split}$$

$$f_2(x) = \left\{ \begin{array}{l} 1/\left(1-x^2\right) \ \mathrm{si} \ -1 < x < 1 \\ 0 \ \mathrm{sinon} \end{array} \right. \ \mathrm{et} \ f_3(x) = \left\{ \begin{array}{l} 1/\left(1-x^2\right) \ \mathrm{si} \ x > 1 \\ 0 \ \mathrm{sinon} \end{array} \right.$$

De plus, si pour tout x de V, $C_1f_1(x) + C_2f_2(x) + C_3f_3(x) = 0$, en évaluant en 0, 2 et -2, on obtient $C_1 = C_2 = C_3 = 0$. Donc, (f_1, f_2, f_3) est libre puis une base de l'espace des solutions. Donc, n = 3. D) est vrai et le reste est faux.

Question 3:

- A) FAUX
- B) FAUX
- C) VRAI
- **D**) FAUX

Explication 3 : Soit I I'un des trois intervalles $]-\infty,-1[,]-1,1[$ ou $]1,+\infty[$.

$$\begin{split} f \ \mathrm{solution} \ \mathrm{de} \ (E) \ \mathrm{sur} \ \mathrm{I} &\Leftrightarrow \forall x \in \mathrm{I}, \ \left(1-x^2\right) f'(x) - 2x f(x) = x^2 \\ &\Leftrightarrow \forall x \in \mathrm{I}, \ \left(\left(1-x^2\right) f\right)'(x) = x^2 \Leftrightarrow \exists C \in \mathbb{R} / \ \forall x \in \mathrm{I}, \ \left(1-x^2\right) f(x) = \frac{x^3}{3} + C \\ &\Leftrightarrow \exists C \in \mathbb{R} / \ \forall x \in \mathrm{I}, \ f(x) = \frac{\frac{x^3}{3} + C}{1-x^2} \end{split}$$

Une solution de (E) sur I est obtenue pour $C = 0 : x \mapsto \frac{x^3}{3(1-x^2)}$, fonction qui est finalement solution de (E) sur V. Donc, C) est vrai.

Les solutions de (E) sur I sont les fonctions $x\mapsto \frac{\frac{x^3}{3}+C}{1-x^2},\ C\in\mathbb{R}.$ Aucune valeur de C n'est telle que $1-x^2$ ne se simplifie $(C = -\frac{1}{3} \text{ permet de simplifier } x - 1 \text{ mais pas } x + 1 \text{ et } C = \frac{1}{3} \text{ permet de simplifier } x + 1 \text{ et pas } x - 1) \text{ et donc B) et A) sont$ faux. D) est clairement faux.

Question 4:

- A) FAUXB) FAUX

- D) FAUX

Explication 4: Tout est faux puisqu'il faut trois constantes C_1 , C_2 et C_3 indépendantes les unes des autres. Par contre sur I, D) est vrai.

Partie II

Question 5:

- A) FAUX
- B) VRAI
- C) FAUX
- D) FAUX

Explication 5: On note (E_c) l'équation caractéristique associée à la récurrence proposée.

Pour A),
$$(E_c): 2z^2 + 5z + 2 = 0 \Leftrightarrow 2\left(z + \frac{1}{2}\right)(z + 2) = 0$$
. L'ensemble des solutions est $\left\{\lambda\left((-2)^n\right) + \mu\left(\left(-\frac{1}{2}\right)^n\right)\right\}$. A) est faux.

est raux. Pour B),
$$(E_c): 2z^2 - 5z + 2 = 0 \Leftrightarrow 2\left(z - \frac{1}{2}\right)(z - 2) = 0$$
. L'ensemble des solutions est $\left\{\lambda\left(2^n\right) + \mu\left(\frac{1}{2^n}\right)\right\}$. B) est vrai. Pour C), $(E_c): 2z^2 - 3z - 2 = 0 \Leftrightarrow 2\left(z + \frac{1}{2}\right)(z - 2) = 0$. L'ensemble des solutions est $\left\{\lambda\left(2^n\right) + \mu\left(\left(-\frac{1}{2}\right)^n\right)\right\}$. C) est

Pour C),
$$(E_c): 2z^2 - 3z - 2 = 0 \Leftrightarrow 2\left(z + \frac{1}{2}\right)(z - 2) = 0$$
. L'ensemble des solutions est $\left\{\lambda(2^n) + \mu\left(\left(-\frac{1}{2}\right)^n\right)\right\}$. C) es faux.

Pour D),
$$(E_c): 2z^2 + 3z - 2 = 0 \Leftrightarrow 2\left(z - \frac{1}{2}\right)(z+2) = 0$$
. L'ensemble des solutions est $\left\{\lambda\left((-2)^n\right) + \mu \frac{1}{2^n}\right\}$. D) est faux.

Question 6:

- A) FAUX
- B) VRAI
- C) FAUX
- D) FAUX

 $\textbf{Explication 6:} \ \underline{L} \text{'\'equation caract\'eristique associ\'ee \`a (R) est } (E_c): 3z^2-2z-5=0. \ \text{Les solutions de cette \'equation sont } (E_c): 3z^2-2z-5=0.$ $q_2=-1$ et $q_1=\frac{5}{3}$ (à partir de $q_1q_2=-\frac{5}{3}$). Donc, B) est vrai et le reste est faux.

Question 7: A) VRAI B) FAUX C) FAUX C) FAUX

Explication 7: Donc, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que : $\forall n \in \mathbb{N}, \ u_n = \lambda \left(\frac{5}{3}\right)^n + \mu(-1)^n$.

$$\left\{ \begin{array}{l} u_0 = 1 \\ u_1 = \frac{13}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \lambda + \mu = 1 \\ \frac{5}{3}\lambda - \mu = \frac{13}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \frac{8}{3}\lambda = \frac{16}{3}\left((\mathrm{I}) + (\mathrm{II})\right) \\ \lambda + \mu = 1 \; (\mathrm{I}) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \lambda = 2 \\ \mu = -1 \; (\mathrm{I}) \end{array} \right.$$

Donc, pour tout $n \in \mathbb{N}$, $u_n = 2\left(\frac{5}{3}\right)^n - (-1)^n$. A) est vrai et le reste est faux.

Partie III

Question 8:

- A) FAUX
- B) FAUX
- C) VRAI
- D) FAUX

Explication 8: Il existe trois réels a, b et c tels que

$$R = \frac{1}{X(X-1)^2} = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{(X-1)^2}.$$

- $\alpha = \lim_{x \to 0} xR(x) = \frac{1}{(0-1)^2} = 1.$

$$\frac{1}{X(X-1)^2} = \frac{1}{X} - \frac{1}{X-1} + \frac{1}{(X-1)^2}.$$

Donc, C) est vrai et le reste est faux.

Question 9:

- A) VRAI
- B) FAUX
- C) FAUX
- D) FAUX

Explication 9 : Une primitive de la fonction $x \mapsto \frac{1}{x(x-1)^2}$ sur]0, 1[est donc

$$F \ : \ x \mapsto \ln|x| - \ln|x - 1| - \frac{1}{x - 1} = \ln(x) - \ln(1 - x) - \frac{1}{x - 1}.$$

A) est vrai et le reste est faux.

Question 10:

- A) FAUXB) FAUXC) FAUX

Explication 10: Une primitive de la fonction $x \mapsto \frac{1}{x(x-1)^2}$ sur]1, + ∞ [est donc

$$F \ : \ x \mapsto \ln|x| - \ln|x - 1| - \frac{1}{x - 1} = \ln(x) - \ln(x - 1) - \frac{1}{x - 1}.$$

Tout est faux.

- A) FAUX
 B) VRAI
 C) FAUX

Explication 11: Q est continue sur le segment [2,3] et donc I existe. D) est faux. A) et C) sont faux car I > 0.

$$I = \left[\ln(x) - \ln(x - 1) - \frac{1}{x - 1}\right]_2^3 = \left(\ln 3 - \ln 2 - \frac{1}{2}\right) - (\ln 2 - \ln 1 - 1) = \ln\left(\frac{3}{4}\right) + \frac{1}{2}.$$

B) est vrai.

Question 12: A) FAUX B) FAUX C) VRAI

Explication 12 : Pour tout réel x, $g(x) = e^{-(1+2i\pi)x}$. Une primitive de g sur $\mathbb R$ est la fonction G définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ G(x) = -\frac{1}{1+2in}e^{-(1+2in)x} = -\frac{1}{1+2in}e^{-x}e^{-2inx}.$$

C) est vrai et le reste est faux.

- A) FAUX
 B) FAUX
 C) FAUX
- **D)** VRAI

Explication 13 : (erreur d'énoncé : lire t < -1)

La décomposition en éléments simples de $f = \frac{2X}{(1+X^2)(1+X)^2}$ sur \mathbb{R} s'écrit

$$f = \frac{a}{1+X} + \frac{b}{(1+X)^2} + \frac{cX+d}{1+X^2}, \ (a,b,c,d) \in \mathbb{R}^4.$$

•
$$b = \lim_{x \to -1} (x+1)^2 f(x) = \frac{2(-1)}{1+(-1)^2} = -1.$$

•
$$b = \lim_{x \to -1} (x+1) f(x) = \frac{1}{1+(-1)^2} = -1.$$

• $ci + d = \lim_{x \to i} (1+x^2) f(x) = \frac{2i}{(1+i)^2} = \frac{2i}{2i} = 1$ et donc $d = 1$ et $c = 0$.
• $a + c = \lim_{x \to +\infty} xf(x) = 0$ et donc $a = 0$.

•
$$a + c = \lim_{x \to +\infty} xf(x) = 0$$
 et donc $a = 0$.

Finalement, $\frac{2X}{(1+X^2)(1+X)^2} = -\frac{1}{(1+X)^2} + \frac{1}{1+X^2}$. D) est vrai et le reste est faux.

- A) FAUX
 B) FAUX
 C) VRAI
 D) FAUX

Explication 14: Les primitives de f sur] $-\infty$, -1[sont donc les fonctions de la forme F : $t \mapsto \frac{1}{1+t} + \operatorname{Arctan} t + C$, $C \in \mathbb{R}$. C) est vrai et le reste est faux.

Question 15

- A) FAUX
 B) VRAI
 C) FAUX

- D) FAUX

Explication 15 : (l'intégrale proposée fait partie du programme de deuxième année) $I_0 = \int_0^1 x \, dx = \frac{1}{2}$. B) est vrai et le reste est faux.

Explication 16: Soit $n \in \mathbb{N}^*$. Une intégration par parties fournit

$$\begin{split} I_n &= \left[\frac{x^2}{2} \left(\ln\left(\frac{1}{x}\right)\right)^n\right]_0^1 - \int_0^1 \frac{x^2}{2} \left(\frac{-n/x^2}{1/x}\right) \left(\ln\left(\frac{1}{x}\right)\right)^{n-1} \ dx \\ &= 0 - \lim_{x \to 0} \frac{x^2}{2} \left(\ln\left(\frac{1}{x}\right)\right)^n + \frac{n}{2} \int_0^1 x \left(\ln\left(\frac{1}{x}\right)\right)^{n-1} \ dx \\ &= \frac{n}{2} I_{n-1}. \end{split}$$

Donc, pour tout $n \in \mathbb{N}^*$, $I_n = \frac{n}{2}I_{n-1}$ ou aussi pour tout $n \in \mathbb{N}$, $I_{n+1} = \frac{n+1}{2}I_n$. A) et B) sont vrais et C) et D) sont faux.

Question 17:

Explication 17: Pour $n \in \mathbb{N}^*$, $I_n = \frac{n}{2} \times \frac{n-1}{2} \times \ldots \times \frac{1}{2} \times I_0 = \frac{n!}{2^{n+1}}$ ce qui reste vrai pour n = 0. C) est vrai et le reste est faux.

Partie IV

Question 18:

- A) FAUX
 B) VRAI
 C) FAUX

Explication 18: D'après un théorème de croissances comparées, $\left|\frac{n}{(-2)^n(n-1)!}\right| = \frac{n}{2^n(n-1)!} = \frac{n}{n-1} = o\left(\frac{1}{n^2}\right)$. La série de terme général $\frac{1}{n^2}$ converge (série de RIEMANN d'exposant 2 > 1) et donc la série de terme général $\frac{n}{(-2)^n(n-1)!}$ converge absolument et donc converge. B) est vrai et le reste est faux.

A) FAUX B) FAUX C) FAUX

converge absolument et donc converge

En A), la raison invoquée n'est pas correcte car par exemple, $\frac{1}{n}$ tend vers 0 quand n tend vers $+\infty$ mais la série de terme général $\frac{1}{n}$ diverge. Donc, A) est faux.

 $\begin{array}{l} u_n \text{ n'est pas \'equivalent \`a} \ \frac{1}{n^2} \ \mathrm{car} \ \mathrm{cos}(n\pi) - \mathrm{cos} \left(\frac{n\pi}{2}\right) \ \mathrm{ne} \ \mathrm{converge} \ \mathrm{pas} \ \mathrm{vers} \ 1. \ \mathrm{Donc}, \ \mathrm{B}) \ \mathrm{est} \ \mathrm{faux}. \\ \mathrm{Si} \ n \in 1 + 4\mathbb{Z}, \ \mathrm{cos}(n\pi) - \mathrm{cos} \left(\frac{n\pi}{2}\right) = -1 - 0 = -1 < 0. \ \mathrm{Donc} \ \mathrm{C}) \ \mathrm{est} \ \mathrm{faux}. \end{array}$

$$\begin{split} \sum_{n=1}^{+\infty} u_n &= \sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{n^2} - \sum_{n=1}^{+\infty} \frac{\cos\left(\frac{n\pi}{2}\right)}{n^2} \text{ (combinaison linéaire de deux séries convergentes)} \\ &= \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} - \sum_{p=1}^{+\infty} \frac{\cos\left(\frac{2p\pi}{2}\right)}{(2p)^2} \text{ (car } \cos\left((2p+1)\frac{\pi}{2}\right) = 0) \\ &= \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} - \frac{1}{4} \sum_{p=1}^{+\infty} \frac{(-1)^p}{p^2} = \frac{3}{4} \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}. \end{split}$$

On « sait » que
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
. En posant $S = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$, on a
$$\frac{\pi^2}{6} + S = \sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = 2 \sum_{p=1}^{+\infty} \frac{1}{(2p)^2} = \frac{1}{2} \frac{\pi^2}{6}$$

et donc
$$S = -\frac{1}{2} \times \frac{\pi^2}{6} = -\frac{\pi^2}{12}$$
 puis

$$\sum_{n=1}^{+\infty} \frac{\cos(n\pi) - \cos\left(\frac{n\pi}{2}\right)}{n^2} = \frac{3}{4} \left(-\frac{\pi^2}{12}\right) = -\frac{\pi^2}{16}.$$

D) est faux.

Question 20:

- A) FAUXB) VRAIC) FAUX

- **D)** FAUX

Explication 20 : Pour $n \in \mathbb{N}^*$,

$$\begin{split} u_{n+1} - u_n &= \left(\sum_{p=1}^{n+1} \frac{1}{p} - \ln(n+1)\right) - \left(\sum_{p=1}^{n} \frac{1}{p} - \ln(n)\right) = \frac{1}{n+1} - \left(\ln(n+1) - \ln(n)\right) \\ &= \frac{1}{n} \frac{1}{1 + \frac{1}{n}} - \ln\left(1 + \frac{1}{n}\right) \end{split}$$

puis

$$\nu_n \underset{n \to +\infty}{=} \frac{1}{n} \left(1 + O\left(\frac{1}{n}\right) \right) - \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right) \right) \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right).$$

La série de terme général $\frac{1}{n^2}$ converge et donc la série de terme général ν_n converge. Donc, B) est vrai et A) et D) sont faux.

$$\nu_n \underset{n \to +\infty}{=} \frac{1}{n} \left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right)\right) - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) \underset{n \to +\infty}{=} -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} -\frac{1}{2n^2}.$$

La série de terme général $\frac{1}{n^3}$ converge mais v_n est prépondérant devant $\frac{1}{n^3}$ et donc l'implication de C) est fausse.

Partie V

Question 21:

- A) FAUXB) FAUXC) FAUX
- D) VRAI

Explication 21: $1 \times 2 \times 3 \times 4 = 24$ n'est divisible ni par 16, ni par 18, ni par 20 et donc A), B) et C) sont faux. Sur quatre entiers consécutifs n, n + 1, n + 2 et n + 3, il y en a deux pairs, l'un des deux pairs étant divisible par 4. Donc, n(n+1)(n+2)(n+3) est divisible par $2\times 4=8$. D'autre part, l'un des trois entiers consécutifs n, n+1 et n+2 est divisible par 3 et donc n(n+1)(n+2)(n+3) est divisible par 3.

Puisque $8 \land 3 = 1$, n(n+1)(n+2)(n+3) est divisible par $8 \times 3 = 24$. Donc, D) est vrai.

Question 22:

- A) FAUXB) VRAIC) FAUX

- D) FAUX

Explication 22: (lire: b strictement positif) $a^4 + 1 = a^4 + 2a^2 + 1 - 2a^2 = (a^2 + 1)^2 - 2a^2$. Puisque b divise $a^2 + 1$,

b divise
$$a^4 + 1 \Leftrightarrow b$$
 divise $2a^2$.

Ensuite, un diviseur commun de b est a^2 divise encore $a^2 + 1$ et a^2 puis divise $(a^2 + 1) - a^2 = 1$. Donc, b et a^2 sont premiers entre eux. D'après le théorème de Gauss,

b divise
$$a^4 + 1 \Leftrightarrow b$$
 divise $2a^2 \Leftrightarrow b$ divise $2 \Leftrightarrow b \in \{1, 2\}$.

B) est vrai et le reste est faux.

Question 23:

- A) FAUXB) FAUX
- C) VRAI
- **D)** FAUX

Explication 23 : D'après la formule de LEGENDRE,
$$v_5(23!) = \left[\frac{23}{5}\right] = 4$$
 (et $v_2(23!) = \left[\frac{23}{2}\right] + \left[\frac{23}{4}\right] + \left[\frac{23}{8}\right] + \left[\frac{23}{16}\right] = 11 + 5 + 2 + 1 = 19$).

Donc, $23! = 5^4 \times 2^{19} \times N = N' \times 10^4$ où N' est un entier premier à 5 et donc non divisible par 10. L'écriture décimale de 23! se termine par quatre 0. C) est vrai et le reste est faux.

Question 24:

- D) FAUX

Explication 24 : Si $n \ge 5$, $n! = n(n-1) \dots 6.5.4.3.2$ La valuation 5-adique de n! est strictement inférieure à la valuation 2-adique de n! ($\left\lceil \frac{n}{5} \right\rceil + \left\lceil \frac{n}{5^2} \right\rceil + \dots < \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{2^2} \right\rceil + \dots$). Donc, une fois récupéré tous les 5 présents dans n! puis après avoir associé à chacun de ces 5 le facteur premier 2, il reste

au moins un 2 et donc n! s'écrit sous la forme 10^kN où N est un nombre pair non divisible par 10. A) et C) sont vrais et B) et D) sont faux.

Question 25:

- A) FAUX
- B) FAUX
- C) VRAI
- D) FAUX

Explication 25: $2^{21} - 1$ est impair et n'est donc pas divisible par 2. A) est faux.

Explication 23 : 2^{-1} est impair et n'est donc pas divisible par 2. A) est faux. $2 \equiv -1$ [3] et donc $2^{21} - 1 \equiv (-1)^{21} - 1 \equiv 1$ [3]. $2^{21} - 1$ n'est pas divisible par 3. B) est faux. D'après le petit théorème de Fermat, $2^7 \equiv 2$ [7] puis $2^{21} \equiv 2^3 \equiv 1$ [7] et donc $2^{21} - 1$ est divisible par 7. C) est vrai. De même, puisque $2 \land 11 = 1$, $2^{10} \equiv 1$ [11] puis $2^{20} \equiv 1$ [11] puis $2^{21} \equiv 2$ [11]. $2^{21} - 1$ n'est pas divisible par 11. D) est faux.

Question 26:

- A) FAUX
- B) VRAI
- C) FAUX
- D) FAUX

Explication 26: $\sqrt{113} = 10, \dots, \sqrt{127} = 11, \dots, \sqrt{131} = 11, \dots$ et $\sqrt{137} = 11, \dots$

- 113 n'est divisible ni par 2, ni par 3, ni par 5, ni par 7. Donc, 113 est premier.
- 127 n'est divisible ni par 2, ni par 3, ni par 5, ni par 7, ni par 11. Donc, 127 est premier.
- 131 n'est divisible ni par 2, ni par 3, ni par 5, ni par 7, ni par 11. Donc, 131 est premier.
- 137 n'est divisible ni par 2, ni par 3, ni par 5, ni par 7, ni par 11. Donc, 137 est premier.

Modulo 113, $2^7 = 128 \equiv 15$ puis $2^{21} \equiv 15^3 = 225 \times 5 \equiv (-1) \times 5 = -5$ puis $2^{21} - 1 \equiv -6$ [113]. Donc A) est faux. Modulo 127, $2^7 = 128 \equiv 1$ puis $2^{21} \equiv 1^3 = 1$ puis $2^{21} - 1 \equiv 0$ [127]. Donc B) est vrai.

Modulo 131, $2^7 = 128 \equiv -3$ puis $2^{21} \equiv (-3)^3 = -27$ puis $2^{21} - 1 \equiv -28$ [131]. Donc C) est faux. Modulo 137, $2^7 = 128 \equiv -9$ puis $2^{21} \equiv (-9)^3 = -81 \times 9 \equiv 56 \times 9 = 504 \equiv 93$ puis $2^{21} - 1 \equiv 92$ [137]. Donc D) est faux.

- A) FAUXB) VRAIC) VRAI

Explication 27 : Modulo 3, $3^{12} - 1 \equiv 0 - 1 = -1$. Donc A) est faux.

Modulo 5, $3^2 = 9 \equiv -1$ puis $3^{12} \equiv (-1)^6 = 1$ puis $3^{12} - 1 \equiv 0$ [5]. B) est vrai. Modulo 7, $3^2 = 9 \equiv 2$ puis $3^{12} \equiv 2^6 = 64 \equiv 1$ puis $3^{12} - 1 \equiv 0$ [7]. C) est vrai. Modulo 11, $3^2 = 9 \equiv -2$ puis $3^{12} \equiv (-2)^6 = 64 \equiv -2$ puis $3^{12} - 1 \equiv -3$ [11]. D) est faux.

- A) VRAI
 B) FAUX
 C) FAUX

 $\textbf{Explication 28:} \text{ Soit } k = [x] \in \mathbb{Z}. \text{ Donc, } k \leqslant x < k+1 \text{ puis } kn \leqslant nx < (k+1)n \text{ (car } n \in \mathbb{N}^*) \text{ puis } kn \leqslant [nx] < (k+1)n$ puis $k \le \frac{[nx]}{n} < k+1$ et donc $\left\lceil \frac{[nx]}{n} \right\rceil = k = [x]$. Donc, A) est vrai et le reste est faux.

Question 29: A) FAUX B) VRAI

- C) FAUX
- D) FAUX

Explication 29: 2000 est premier au nombre premier 7. D'après le petit théorème de FERMAT, $2000^6 \equiv 1$ [7]. Ensuite, $2000^{1000} = 2000^{166 \times 6 + 4} = (2000^6)^{166} \times 2000^4 \equiv 2000^4 \text{ [7]}.$

 $2000 = 285 \times 7 + 5$. Donc $2000 \equiv 5 \equiv -2$ [7] puis $2000^{1000} \equiv 2000^4 \equiv (-2)^4 = 16 \equiv 2$ [7]. B) est vrai et le reste est faux.

Partie VI

Question 30:

- A) FAUX
- B) VRAI
- C) FAUX
- **D)** FAUX

Explication 30: En développant suivant la première colonne, on obtient

$$\det(A) = 0(0-1) - \frac{1}{a}(0-a) + \frac{1}{a^2}(a^2 - 0) = 2.$$

B) est vrai et le reste est faux.

Question 31:

- A) FAUX
 B) FAUX
 C) FAUX

Explication 31 : On sait que la trace de M doit être égale au rang de la projection, c'est-à-dire la dimension de P à savoir 2. Donc, A), B) et C) sont faux.

Un vecteur normal à P est n = (2, -2, 1). Le projeté orthogonal d'un vecteur u = (x, y, z) sur P est

$$p_P(u) = u - \frac{u.n}{\|n\|^2} n = (x, y, z) - \frac{2x - 2y + z}{9} (2, -2, 1) = \frac{1}{9} (5x + 4y - 2z, 4x + 5y + 2z, -2x + 2y + 8z).$$

La matrice demandée est donc $M = \frac{1}{9} \begin{pmatrix} 5 & 4 & -2 \\ 4 & 5 & 2 \\ -2 & 2 & 8 \end{pmatrix}$. D) est vrai.

- A) FAUX
 B) FAUX
 C) VRAI

 - D) FAUX

Explication 32: $\det A = 2(3-0) - (4+3) = -1 \neq 0$ et $\det(B) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) - (-96+112) = -3(-21+24) + 3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) + (-96+112) = -3(-24+32) = -3$ $-9 + 24 - 16 = -1 \neq 0$. Donc, $A \in GL_3(\mathbb{R})$, $B \in GL_3(\mathbb{R})$ puis $M = BA \in GL_3(\mathbb{R})$. Donc, D) est faux. De plus, $\det(M) = \det(A) \times \det(B) = (-1)(-1) = 1.$

$$M = \begin{pmatrix} -3 & 8 & -16 \\ -3 & 7 & -12 \\ -1 & 2 & -3 \end{pmatrix} \begin{pmatrix} 2 & 4 & 3 \\ 1 & 3 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 28 & -25 \\ 1 & 21 & -21 \\ 0 & 5 & -6 \end{pmatrix}.$$

A partir de la formule $M^{-1} = \frac{1}{\det(M)} {}^{t}(\operatorname{com}(M))$, on obtient

$$M^{-1} = \frac{1}{1} \begin{pmatrix} -21 & 43 & -63 \\ 6 & -12 & 17 \\ 5 & -10 & 14 \end{pmatrix} = \begin{pmatrix} -21 & 43 & -63 \\ 6 & -12 & 17 \\ 5 & -10 & 14 \end{pmatrix}.$$

C) est vrai et le reste est faux.

Question 33:

- A) VRAIB) VRAIC) FAUX

- D) FAUX

Explication 33: $\det_{B}(u, v, w) = \begin{vmatrix} -3 & -2 & 4 \\ 1 & 1 & -1 \\ 1 & 4 & 2 \end{vmatrix} = -3(6) - (-20) + (-2) = 0.$ Donc, (u, v, w) n'est pas une base de E puis $Ker(f) \neq \{0\}$. A) est faux, B) est vrai et C) est faux.

(f(i), f(j)) = (u, v) est libre et donc $rq(f) \ge 2$ puis rg(f) = 2 car $f \notin GL(E)$. D'après le théorème du rang, Ker(f) est une droite vectorielle.

$$f(-2i+j+k) = -2(-3i+j+k) + (-2i+j+4k) + (4i-j+2k) = 8i-2j+4k \neq 0.$$

Donc, D) est faux.

Partie VII

Question 34:

- A) VRAI
 B) VRAI
 C) FAUX
- D) FAUX

Explication 34: f est dérivable sur \mathbb{R}^* et donc continue sur \mathbb{R}^* en tant que quotient de fonctions dérivables sur \mathbb{R}^* dont le dénominateur ne s'annule pas sur \mathbb{R}^* et d'autre part,

$$f(x) = \underset{\substack{x \to 0 \\ x \neq 0}}{=} \frac{\left(1 + x + \frac{x^2}{2} + o(x^2)\right) - x - 1}{x} = f(0) + \frac{x}{2} + o(x).$$

f admet en 0 un développement limité d'ordre 1. Donc, f est dérivable en 0 et en particulier continue en 0. De plus, $f'(0) = \frac{1}{2}$. Donc, C) et D) sont faux.

Finalement, f est dérivable sur \mathbb{R} et en particulier continue sur \mathbb{R} . A) et B) sont vrais.

${\it Question} \ 35:$

- A) FAUX
 B) VRAI
 C) FAUX

Explication 35: Puisque $\lim_{x \to +\infty} -\frac{1}{x} = 0$,

$$f(x) = (x+1)e^{-\frac{1}{x}} = (x+1)\left(1 - \frac{1}{x} + o\left(\frac{1}{x}\right)\right) = x+1 - 1 + o(1) = x + o(1).$$

La droite d'équation y = x est asymptote à la courbe représentative de f en $+\infty$. B) est vrai et le reste est faux (l'intitulé de la question A devant être compris sous la forme : la courbe représentative de f n'admet pas de droite asymptote en $+\infty$).

Question 36: A) VRAI B) FAUX C) FAUX

Explication 36: $z_1z_2 = \frac{i\alpha(1-i)}{2(1+i)} = \frac{\alpha(1+i)}{2(1+i)} = \frac{\alpha}{2}$. Donc, B) et C) sont faux. D'autre part, pour D),

$$-\frac{a}{1-i} \times \frac{1+i}{2} = -\frac{a}{2} \frac{(1+i)^2}{(1+i)(1-i)} = -\frac{ia}{2}$$

et donc D) est faux. A) peut encore être vrai.

$$\begin{split} z_1 + z_2 &= -\frac{2(\alpha + \mathfrak{i})}{2(1 + \mathfrak{i})} = -\frac{\alpha + \mathfrak{i}}{1 + \mathfrak{i}} \text{ et} \\ &- \frac{\alpha}{1 + \mathfrak{i}} - \frac{1 + \mathfrak{i}}{2} = \frac{-2\alpha - (1 + \mathfrak{i})^2}{2(1 + \mathfrak{i})} = \frac{-2\alpha - 2\mathfrak{i}}{2(1 + \mathfrak{i})} = -\frac{\alpha + \mathfrak{i}}{1 + \mathfrak{i}}. \end{split}$$

A) est vrai.