Banque d'Épreuves des Concours des Écoles d'Actuariat et Statistique. Mathématiques. Option A

Partie I. Solutions de l'équation de réplication scalaire

1) (a) Pour $x \in]0, 1[$, $\varphi(x) = -\frac{1}{x} + \ln x - \ln(1-x)$. φ est dérivable sur]0, 1[et pour tout réel x,

$$\phi'(x) = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{1-x} = \frac{(1-x) + x(1-x) + x^2}{x^2(1-x)} = \frac{1}{x^2(1-x)} > 0.$$

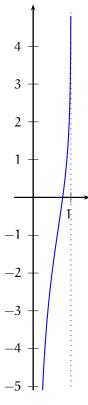
 $\phi \text{ est continue et strictement croisante sur }]0,1[.\mathrm{Donc},\ \phi \text{ est une bijection de }]0,1[\ \mathrm{sur}\ \phi(]0,1[) = \\ \bigg| \lim_{x\to 0} \phi(x), \lim_{x\to 1} \phi(x) \bigg|.$

Pour x>0, $\varphi(x)=\frac{-1+x\ln x}{x}-\ln(1-x)$ et donc $\varphi(x)\underset{x\to 0}{\sim}-\frac{1}{x}$ d'après un théorème de croissances comparées puis $\lim_{x\to 0}\varphi(x)=-\infty$.

$$\begin{split} &\lim_{x\to 0}\phi(x)=-\infty.\\ &\text{D'autre part, }\phi(x)\underset{x\to 1}{\sim}-\ln(1-x)\text{ et donc }\lim_{x\to 1}\phi(x)=+\infty. \end{split}$$

Finalement, ϕ est une bijection de]0,1[sur \mathbb{R} .

(b) Allure du graphe de φ .



(c) Soit a un réel donné de]0,1[, $\frac{\varphi(x)-\varphi(\alpha)}{x-\alpha} \xrightarrow[x\to 1]{} +\infty$ et donc $\sup\left\{\frac{\varphi(y)-\varphi(x)}{y-x},\ (x,y)\in]0,1[^2,\ x\neq y\right\}=+\infty$. φ n'est pas lipschitzienne sur]0,1[. Par contre, φ' est continue et donc bornée sur tout segment de]0,1[et donc φ est lipschitzienne sur tout segment de]0,1[.

Pour $x \in]0,1[$, posons $u(x)=x^2(1-x)=x^2-x^3$. Pour $x \in]0,1[$, $u'(x)=2x-3x^2=x(2-3x)$. u est strictement positive sur]0,1[et admet un maximum en $\frac{2}{3}$ égal à $u\left(\frac{2}{3}\right)=\frac{4}{9}\left(1-\frac{2}{3}\right)=\frac{4}{27}$. Donc, pour tout réel x de]0,1[, $\phi'(x)\geqslant \frac{27}{4}$. Puisque la fonction ϕ' ne s'annule pas sur]0,1[, on sait que la fonction ϕ^{-1} est dérivable sur $\phi(]0,1[)=\mathbb{R}$ puis que, pour tout réel u,

$$0 \leqslant \left(\varphi^{-1}\right)'(y) = \frac{1}{\varphi'(\varphi^{-1}(y))} \leqslant \frac{4}{27}.$$

Ainsi, $(\varphi^{-1})'$ est bornée sur \mathbb{R} et on sait alors que φ^{-1} est lipschitzienne sur \mathbb{R} (par exemple de rapport $\frac{4}{27}$).

2) (a) Soit $t \in \mathbb{R}$. Puisque f est de classe C^1 sur \mathbb{R} , à valeurs dans]0,1[, la fonction $u \mapsto \frac{f'(u)}{(f(u))^2(1-f(u))}$ est continue sur \mathbb{R} . On en déduit l'existence de l'intégrale proposée.

D'après la question, la fonction $u\mapsto \phi(f(u))$ est dérivable sur $\mathbb R$ de dérivée la fonction $u\mapsto \frac{f'(u)}{(f(u))^2(1-f(u))}$. Donc,

$$\int_0^t \frac{f'(u)}{(f(u))^2(1-f(u))} du = [\phi(f(u))]_0^t = \phi(f(t)) - \phi(f(0)).$$

(b) Existence. Pour tout réel t, posons $f(t) = \phi^{-1}(at + \phi(y))$. La fonction $t \mapsto at + \phi(y)$ est définie et dérivable sur \mathbb{R} à valeurs dans \mathbb{R} et la fonction ϕ^{-1} est définie et dérivable sur \mathbb{R} à valeurs dans]0,1[. Donc, la fonction f est dérivable sur \mathbb{R} , à valeurs dans]0,1[puis, pour tout réel t

$$f'(t) = \frac{\alpha}{\phi'\left(\phi^{-1}(\alpha t + \phi(y))\right)} = \alpha\left(\phi^{-1}(\alpha t + \phi(y))\right)^2\left(1 - \phi^{-1}(\alpha t + \phi(y))\right) = \alpha(f(t))^2(1 - f(t))$$

et d'autre part, $f(0) = \phi^{-1}(\phi(y)) = y$. Donc, la fonction f convient. Pour $t \in \mathbb{R}$, posons $f_y(t) = \phi^{-1}(at + \phi(y))$.

Unicité. Soit f est une solution de (2). Nécessairement, f est de classe C^1 sur \mathbb{R} , à valeurs dans]0,1[et pour tout réel t,

$$\phi(f(t)) - \phi(y) = \phi(f(t)) - \phi(f(0)) = \int_0^t \frac{f'(u)}{(f(u))^2 (1 - f(u))} du = \int_0^t a du = at$$

puis

$$f(t) = \varphi^{-1}(\alpha t + \varphi(y)) = f_{u}(t).$$

Ceci démontre l'unicité de f_y.

3) (a) Soit $[a, b] \subset]0, 1[$. Soit $(y, z) \in [a, b]^2$. Pour tout réel t, d'après la question 1.(c),

$$\begin{split} |f_y(t)-f_z(t)| &= \left|\phi^{-1}(\alpha t + \phi(y)) - \phi^{-1}(\alpha t + \phi(z))\right| \leqslant \frac{4}{27} \left|(\alpha t + \phi(y)) - (\alpha t + \phi(z))\right| = \frac{4}{27} |\phi(y) - \phi(z)| \\ &\leqslant \frac{4}{27} \left\|\phi'\right\|_{\infty,[\alpha,b]} |y-z| \text{ (d'après l'inégalité des accroissements finis),} \end{split}$$

et donc, $\|\Phi(y) - \Phi(z)\|_{\infty} \le \frac{4}{27} \|\phi'\|_{\infty,[a,b]} |y-z|$. L'application Φ est donc lipschitzienne sur [a,b] et en particulier continue sur [a,b].

Ainsi, Φ est continue sur tout segment de]0,1[et donc sur]0,1[.

- (b)]0,1[est un connexe par arcs de \mathbb{R} et Φ est continue sur]0,1[à valeurs dans $\mathscr{B}(\mathbb{R},\mathbb{R})$ (car pour tout $y \in]0,1[$ et tout réel t,0 < f(t) < 1). Donc, $\mathscr{S} = \Phi(]0,1[$) est un connexe par arcs de $(\mathscr{B}(\mathbb{R},\mathbb{R}),\|\ \|_{\infty})$ d'après le théorème des valeurs intermédiaires.
- Soit $g = f_{\frac{1}{2}} \in \mathscr{S}$. Pour $\varepsilon > 0$ et pour $t \in \mathbb{R}$, posons $h_{\varepsilon}(t) = g(t) + \frac{2}{\pi}\varepsilon$ Arctan t. h_{ε} est un élément de $\mathscr{B}(\mathbb{R},\mathbb{R})$ tel que $\|h_{\varepsilon} g\|_{\infty} = \varepsilon$. De plus, $h_{\varepsilon}(0) = \frac{1}{2}$ puis $a(h_{\varepsilon}(0))^2 (1 h_{\varepsilon}(0)) = \frac{a}{8}$ et $h'_{\varepsilon}(0) = g'(0) + \frac{2}{\pi}\varepsilon = \frac{a}{8} + \frac{2}{\pi}\varepsilon$. Pour toute valeur de $\varepsilon > 0$, $h'_{\varepsilon}(0) \neq a(h_{\varepsilon}(0))^2 (1 h_{\varepsilon}(0))$ et donc $h_{\varepsilon} \notin \mathscr{S}$.

Ceci montre que toute boule ouverte $B(g, \varepsilon)$ sauf peut-être une, contient au moins un élément h_{ε} de $\mathscr{B}(\mathbb{R}, \mathbb{R})$ qui n'est pas dans \mathscr{S} et donc \mathscr{S} n'est pas une partie ouverte de l'espace vectoriel $(\mathscr{B}(\mathbb{R}, \mathbb{R}), || \parallel_{\infty})$.

• Soit $(f_n)_{n\in\mathbb{N}}$ une suite convergente d'éléments de \mathscr{S} . La suite $(f_n)_{n\in\mathbb{N}}$ converge donc uniformément et en particulier simplement sur \mathbb{R} vers une fonction f qui est bornée sur \mathbb{R} . Il existe une suite $(y_n)_{n\in\mathbb{N}}$ une suite d'éléments de]0,1[telle que

$$\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ f_n(t) = \phi^{-1} \left(at + \phi \left(y_n \right) \right).$$

On note que pour tout $n \in \mathbb{N}$, $y_n = f_n(0) \in]0,1[$ puis que la suite $(y_n)_{n \in \mathbb{N}}$ converge vers f(0). f(0) est donc nécessairement un élément de [0,1].

• Si $y = f(0) \in]0, 1[$, alors pour tout réel t, par continuité de φ sur]0, 1[et de φ^{-1} sur \mathbb{R} ,

$$f(t) = \lim_{n \to +\infty} \varphi^{-1} \left(\alpha t + \varphi \left(y_n \right) \right) = \varphi^{-1} \left(\alpha t + \varphi \left(y \right) \right) = f_y(t),$$

et donc, la fonction f est la fonction f_{u} . Ainsi, f est un élément de \mathscr{S} .

• Si f(0) = 0, $\lim_{n \to +\infty} y_n = 0$ puis $\lim_{n \to +\infty} \phi(y_n) = -\infty$ et donc, pour tout réel t, on a nécessairement

$$f(t) = \lim_{n \to +\infty} \phi^{-1} \left(\alpha t + \phi \left(y_n \right) \right) = \lim_{X \to -\infty} \phi^{-1}(X) = 0.$$

 $f \ \mathrm{est} \ \mathrm{donc} \ \mathrm{n\'{e}cessairement} \ \mathrm{la} \ \mathrm{fonction} \ \mathrm{nulle}. \ \mathrm{Mais} \ \mathrm{pour} \ n \in \mathbb{N}, \ \mathrm{si} \ \alpha > 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to -\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to -\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{si} \ \alpha < 0, \\ \lim_{t \to +\infty} |f_n(t) - f(t)| = 1 \ \mathrm{et} \ \mathrm{et}$

- 1. On en déduit que pour tout $n \in \mathbb{N}$, $\|f f_n\|_{\infty} \ge 1$ ce qui contredit le fait que la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction f sur \mathbb{R} .
- De même, si f(0) = 1, f est nécessairement la fonction constante $t \mapsto 1$ et la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément vers la fonction f sur \mathbb{R} .

En résumé, toute suite d'éléments de \mathscr{S} , qui converge dans l'espace vectoriel normé $(\mathscr{B}(\mathbb{R},\mathbb{R}), \| \|_{\infty})$, converge dans \mathscr{S} . Donc, \mathscr{S} est une partie fermée de l'espace vectoriel normé $(\mathscr{B}(\mathbb{R},\mathbb{R}), \| \|_{\infty})$.

Partie II. Etude du cas où p = 2

- 1) Notons ℓ la limite de g en $+\infty$ et ℓ' la limite de g'. Soit x>0. La fonction g est continue sur [x,2x] et dérivable sur [x,2x[. D'après le théorème des accroissements finis, il existe $c(x)\in]x,2x[$ tel que g(2x)-g(x)=xg'(c(x)). Quand x tend vers $+\infty$, g(2x)-g(x) tend vers $\ell-\ell=0$. D'autre part, puisque c(x)>x, on a $\lim_{x\to +\infty}c(x)=+\infty$ puis $\lim_{x\to +\infty}g'(c(x))=\ell'.$ Si $\ell'\neq 0$, g(2x)-g(x) $\underset{x\to +\infty}{\sim}\ell'x$ ce qui contredit $\lim_{x\to +\infty}g(2x)-g(x)=0.$ Donc, $\ell'=0.$
- 2) (a)

$$\begin{split} x' &= hx \Rightarrow x' - hx = 0 \Rightarrow e^{-H}x' - he^{-H}x = 0 \Rightarrow \left(e^{-H}x\right)' = 0 \\ &\Rightarrow \forall t \in \mathbb{R}, \ e^{-H(t)}x(t) = e^{-H(0)}x(0) \Rightarrow \forall t \in \mathbb{R}, \ x(t) = x(0)e^{H(t) - H(0)}. \end{split}$$

- (b) Si x(0) > 0, alors pour $t \in \mathbb{R}$, x(t) > 0 et si x(0) < 0, alors pour $t \in \mathbb{R}$, x(t) < 0. En particulier, la fonction x ne s'annule pas sur \mathbb{R} . Enfin, si x(0) = 0, alors pour tout $t \in \mathbb{R}$, x(t) = 0.
- 3) (a) Pour tout réel t,

$$\begin{split} f_1'(t) + f_2'(t) &= \langle e_1 - f(t), Af(t) \rangle f_1(t) + \langle e_2 - f(t), Af(t) \rangle f_2(t) \\ &= \langle f_1(t)e_1 + f_2(t)e_2, Af(t) \rangle - \langle f(t), Af(t) \rangle f_1(t) - \langle f(t), Af(t) \rangle f_2(t) \\ &= \langle f(t), Af(t) \rangle - \langle f(t), Af(t) \rangle f_1(t) - \langle f(t), Af(t) \rangle f_2(t) \\ &= \langle f(t), Af(t) \rangle (1 - f_1(t) - f_2(t)). \end{split}$$

- (b) Pour $t \in \mathbb{R}$, posons $x(t) = f_1(t) + f_2(t) 1$ et $h(t) = -\langle f(t), Af(t) \rangle$ de sorte que pour tout réel t, x'(t) = h(t)x(t). On a $x(0) = f_1(0) + f_2(0) 1 = x_0 + 1 x_0 1 = 0$. La fonction h est continue sur \mathbb{R} et donc, d'après la question précédente, pour tout réel t, x(t) = 0 ou encore, pour tout réel $t, f_1(t) + f_2(t) = 1$.
- 4) (a) Pour tout réel t,

$$\begin{split} \langle e_1 - f(t), Af(t) \rangle &= (1 - f_1(t)) \left(\alpha f_1(t) + c f_2(t) \right) - f_2(t) \left(b f_1(t) + c f_2(t) \right) \\ &= (1 - f_1(t)) \left((\alpha - c) f_1(t) + c \right) - (1 - f_1(t)) \left((b - c) f_1(t) + c \right) \\ &= (\alpha - b) \left(1 - f_1(t) \right) f_1(t) \end{split}$$

et donc

$$f_1'(t) = (a - b) (f_1(t))^2 (1 - f_1(t)).$$

Si $\mathfrak{a}=\mathfrak{b},$ alors pour tout réel $\mathfrak{t},$ $f_1'(\mathfrak{t})=0$ puis pour tout réel $\mathfrak{t},$ $f_1(\mathfrak{t})=f_1(0)=x_0.$

Si $a \neq b$, d'après la question I.2.(b), pour tout réel t, $f_1(t) = \varphi^{-1}((a-b)t + \varphi(x_0))$ (ce qui reste vrai quand a = b).

(b) Pour tout réel t, $f(t) = (\varphi^{-1}((a-b)t + \varphi(x_0)), 1 - \varphi^{-1}((a-b)t + \varphi(x_0))).$

 $\mathrm{Si}\ \alpha > b, \\ \lim_{t \to +\infty} (\alpha - b)t + \phi\left(x_{0}\right) = +\infty \ \mathrm{puis} \\ \lim_{t \to +\infty} \phi^{-1}\left((\alpha - b)t + \phi\left(x_{0}\right)\right) = 1. \ \mathrm{Dans}\ \mathrm{ce}\ \mathrm{cas}, \\ \lim_{t \to +\infty} f(t) = (1,0). \\ \mathrm{Dans}\left(x_{0} + b\right) + \frac{1}{2} \left(x_{0} + b\right) + \frac{1}$

Si a < b, $\lim_{t \to +\infty} (a - b)t + \varphi(x_0) = -\infty$ puis $\lim_{t \to +\infty} \varphi^{-1}((a - b)t + \varphi(x_0)) = 0$. Dans ce cas, $\lim_{t \to +\infty} f(t) = (0, 1)$.

Si a = b, $\lim_{t \to +\infty} f(t) = (x_0, 1 - x_0)$.

5) (a) Pour tout réel t,

$$\begin{split} \langle e_1 - f(t), A f(t) \rangle &= \alpha \left((1 - f_1(t)) \, f_1(t) - f_2(t) f_2(t) \right) = \alpha \left((1 - f_1(t)) \, f_1(t) - (1 - f_1(t))^2 \right) \\ &= \alpha \left(1 - f_1(t) \right) \left(2 f_1(t) - 1 \right) \end{split}$$

et donc, pour tout réel t,

$$f_1'(t) = \alpha f_1(t) (1 - f_1(t)) (2f_1(t) - 1)$$
.

(b).i. La question II.2.b) appliquée aux fonctions $x = 1 - f_1$ et $h = -a f_1 (2 f_1 - 1)$ montre que $1 - f_1$ est de signe constant sur \mathbb{R} . Puisque $(1 - f_1)(0) = 1 - x_0 > 0$, on a donc pour tout réel t, $1 - f_1(t) > 0$ puis $f_1(t) < 1$. La question II.2.b) appliquée aux fonctions $x = 2 f_1 - 1$ et $h = 2a f_1 (1 - f_1)$ montre que $2 f_1 - 1$ est de signe constant sur \mathbb{R} . Puisque $(2 f_1 - 1)(0) = 2 x_0 - 1 > 0$, on a donc pour tout réel t, $2 f_1(t) - 1 > 0$ puis $f_1(t) > \frac{1}{2}$.

Finalement, pour tout réel t, $\frac{1}{2} < f_1(t) < 1$.

- (b).ii. Puisque pour tout réel t, $f_1'(t) = af_1(t) (1 f_1(t)) (2f_1(t) 1)$, on en déduit que pour tout réel t, $sgn(a) (f_1'(t)) = +$. La fonction f_1 est donc strictement monotone sur \mathbb{R} . D'autre part, la fonction f_1 est bornée. On en déduit que f_1 a une limite réelle ℓ quand t tend vers $+\infty$.
- (b).iii. D'autre part, la fonction f_1' tend vers le réel $\mathfrak{a}\ell(1-\ell)(2\ell-1)$ quand \mathfrak{t} tend vers $+\infty$. D'après la question II.1, on doit avoir $\mathfrak{a}\ell(1-\ell)(2\ell-1)=0$.
- Si $\alpha > 0$, puisque pour tout réel $t, \frac{1}{2} < f_1(t) < 1$ et que f_1 est strictement croissante sur \mathbb{R} , on en déduit que $\frac{1}{2} < \ell \leqslant 1$. Puisque $\mathfrak{a}\ell(1-\ell)(2\ell-1)=0$, on en déduit que $\ell=1$. Donc, si $\alpha > 0$, $\lim_{t\to +\infty} f(t)=(1,0)$.
- Si a < 0, f_1 est strictement décroissante sur \mathbb{R} , on en déduit que $\frac{1}{2} \leqslant \ell < 1$ et donc $\ell = \frac{1}{2}$ puisque $a\ell(1-\ell)(2\ell-1) = 0$. Donc, si a < 0, $\lim_{t \to +\infty} f(t) = \left(\frac{1}{2}, \frac{1}{2}\right)$.
- $\text{(c) La fonction } f_2 \text{ vérifie de même}: \text{pour tout réel } t, \ f_2'(t) = \alpha f_2(t) \left(1 f_2(t)\right) \left(2 f_2(t) 1\right) \text{ et } f_2(0) = 1 x_0 \in \left] \frac{1}{2}, 1 \right[. \\ \text{D'après la question précédente, si } \alpha > 0, \ \lim_{t \to +\infty} f(t) = (0,1) \text{ et si } \alpha < 0, \lim_{t \to +\infty} f(t) = \left(\frac{1}{2}, \frac{1}{2}\right).$

Partie III. Inégalité de Pinsker

1) (a) La fonction \ln est concave sur $]0,+\infty[$ car sa dérivée seconde, à savoir la fonction $x\mapsto -\frac{1}{x^2}$, est négative sur $]0,+\infty[$. Donc, pour tout $\lambda\in[0,1]$ et tout $(\alpha,b)\in]0,+\infty[^2,\lambda\ln\alpha+(1-\lambda)\ln b\leqslant\ln(\lambda\alpha+(1-\lambda)b)$. Par suite, pour $(x,y)\in]0,1[^2,$

$$K(x,y) = x \ln x + (1-x) \ln(1-x) - (x \ln y + (1-x) \ln(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(1-x) - \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-y)) \geqslant x \ln x + (1-x) \ln(xy + (1-x)(1-x)) + (1-x) \ln(xy + (1-x)(1-$$

La fonction $\psi: x \mapsto x \ln x + (1-x) \ln(1-x) - \ln 2$ est continue sur]0,1[et se prolonge par continuité en 0 et en 1 (en posant $\psi(0) = \psi(1) = -\ln 2$). Son prolongement est alors une fonction continue sur le segment [0,1]. On en déduit que la fonction $x \mapsto x \ln x + (1-x) \ln(1-x) - \ln 2$ est bornée sur]0,1[et en particulier, est minorée sur]0,1[.

Ceci montre que la fonction K est minorée sur $]0,1[^2.$

Pour tout $x \in]0,1[$, $K(x,1-x)=x\ln\left(\frac{x}{1-x}\right)+(1-x)\ln\left(\frac{1-x}{x}\right)=(2x-1)\ln\left(\frac{x}{1-x}\right)$ puis $\lim_{x\to 1}K(x,1-x)=+\infty$. On en déduit que la fonction K n'est pas majorée sur $]0,1[^2$.

(b) Les fractions rationnelles $(x,y) \mapsto \frac{x}{y}$ et $(x,y) \mapsto \frac{1-x}{1-y}$ sont de classe C^1 sur $]0,1[^2$ à valeurs dans $]0,+\infty[$ et la fonction ln est de classe C^1 sur $]0,+\infty[$. Donc, les fonctions $(x,y) \mapsto \ln\left(\frac{x}{y}\right)$ et $(x,y) \mapsto \ln\left(\frac{1-x}{1-y}\right)$ sont de classe C^1 sur $]0,1[^2$. Il en est de même de la fonction [0,1][2] sont de classe [0,1][2] et [0,1][2] sont de classe [0,1][2] son

$$\frac{\partial K}{\partial x}(x,y) = \ln\left(\frac{x}{y}\right) + 1 - \ln\left(\frac{1-x}{1-y}\right) - 1 = \ln\left(\frac{x(1-y)}{y(1-x)}\right)$$

puis, pour $(x, y) \in]0, 1[^2, K(x, y) = x \ln x - x \ln y + (1 - x) \ln(1 - x) - (1 - x) \ln(1 - y))$ et donc

$$\frac{\partial K}{\partial y}(x,y) = -\frac{x}{y} + \frac{1-x}{1-y} = \frac{-x(1-y) + y(1-x)}{y(1-y)} = \frac{y-x}{y(1-y)}.$$

(c) Soit $x \in]0,1[$ fixé. La fonction $\Psi: y \mapsto K(x,y)$ est dérivable sur]0,1[, de dérivée $\Psi': y \mapsto \frac{y-x}{y(1-y)}$. La fonction Ψ' est strictement négative sur]0,x[et strictement positive sur]x,1[. La fonction Ψ admet donc un minimum global strict sur]0,1[égal à $\Psi(x)=x\ln\left(\frac{x}{x}\right)+(1-x)\ln\left(\frac{1-x}{1-x}\right)=0$.

Ainsi, $\forall (x,y) \in]0,1[^2,K(x,y) \geqslant 0$ avec égalité si et seulement x=y ou encore, la fonction K admet sur $]0,1[^2$ un minimum égal à 0 et ce minimum est atteint en tous les $(x,x), x \in]0,1[$, et seulement en ces points.

(d) Soit $x \in]0,1[$ fixé. La fonction $L_x: y \mapsto K(x,y) - 2(x-y)^2$ est dérivable sur]0,1[et pour $y \in]0,1[$

$$\frac{L_x}{dx}(y) = \frac{y-x}{y(1-y)} - 4(y-x) = \frac{y-x}{y(1-y)}(1-4y(1-y))\frac{(y-x)(2y-1)^2}{y(1-y)}.$$

Encore une fois, la fonction L_x admet un minimum en y=x avec $L_x(x)=0$.

$$\mathrm{Donc}, \ \forall (x,y) \in]0,1[^2, \ K(x,y) - 2(x-y)^2 = L_x(y) \geqslant 0 \ \mathrm{puis}, \ \forall (x,y) \in]0,1[^2, \ x \ln \left(\frac{x}{y}\right) + (1-x) \ln \left(\frac{1-x}{1-y}\right) \geqslant 2(x-y)^2.$$

2) (a) Puisque
$$\sum_{i=1}^{p} x_i = \sum_{i=1}^{p} y_i = 1$$
,

$$\begin{split} \sum_{i=1}^{p} |x_i - y_i| &= \sum_{i \in B_+} (x_i - y_i) + \sum_{i \in B_-} (y_i - x_i) = \sum_{i \in B_+} x_i - \sum_{i \in B_+} y_i + \left(1 - \sum_{i \in B_+} y_i\right) - \left(1 - \sum_{i \in B_+} x_i\right) \\ &= 2 \left(x_{B_+} - y_{B_+}\right). \end{split}$$

(b) Si, par l'absurde, pour tout $i \in [1,p]$, on a $x_i > y_i$, alors $1 = \sum_{i=1}^p x_i > \sum_{i=1}^p y_i = 1$ ce qui est impossible. Donc, $B_- \neq \emptyset$. Si $B_+ = \emptyset$ alors, pour tout $i \in [1,p]$, $x_i \leqslant y_i$. Si de plus, par l'absurde, il existe $i_0 \in [1,p]$ tel que $x_{i_0} < y_{i_0}$, alors $1 = \sum_{i=1}^p x_i < \sum_{i=1}^p y_i = 1$ ce qui est impossible.

En résumé, B_- est non vide et de plus, B_+ est vide si et seulement si pour tout $i \in [1, p]$, $x_i = y_i$.

$$\mathrm{Si\ pour\ tout\ }i\in\llbracket 1,p\rrbracket,\,x_i=y_i\ \mathrm{alors\ }x_{B_+}=0,\,y_{B_+}=0\ \mathrm{(erreur\ d'énoncé\,?)}\ \mathrm{et\ }\sum_{i=1}^px_i\ln\left(\frac{x_i}{y_i}\right)=0.$$

Sinon, B_+ et B_- sont non vides et dans ce cas, $0 < x_{B_+} < \sum_{i=1}^p x_i = 1$ et de même $y_{B_+} \in]0,1[$ puis

$$\sum_{i=1}^p x_i \ln \left(\frac{x_i}{y_i} \right) = \sum_{i \in B_+} x_i \ln \left(\frac{x_i}{y_i} \right) + \sum_{i \in B_-} x_i \ln \left(\frac{x_i}{y_i} \right)$$

Inachevé.

 $\textbf{(c)} \text{ Si pour tout } \mathfrak{i} \in [\![1,p]\!], \, x_\mathfrak{i} = y_\mathfrak{i}, \, \text{alors l'inégalité à établir est immédiate. Sinon}, \, x_{B_+} \in]0,1[\text{ et } y_{B_+} \in]0,1[\text{ puis pour tout } \mathfrak{i} \in [\![1,p]\!], \, x_\mathfrak{i} = y_\mathfrak{i}, \, \text{alors l'inégalité à établir est immédiate.}$

$$\begin{split} \sum_{i=1}^{p} x_{i} \ln \left(\frac{x_{i}}{y_{i}} \right) &\geqslant x_{B_{+}} \ln \left(\frac{x_{B_{+}}}{y_{B_{+}}} \right) + (1 - x_{B_{+}}) \ln \left(\frac{1 - x_{B_{+}}}{1 - y_{B_{+}}} \right) = K \left(x_{B^{+}}, y_{B^{+}} \right) \\ &\geqslant 2 \left(x_{B_{+}} - y_{B_{+}} \right)^{2} \ (\text{d'après III.1.d}) \\ &= 2 \left(\frac{1}{2} \sum_{i=1}^{p} |x_{i} - y_{i}| \right)^{2} \ (\text{d'après III.2.a}) \\ &= \frac{1}{2} \left(\sum_{i=1}^{p} |x_{i} - y_{i}| \right)^{2} . \end{split}$$

Partie IV. Convergence vers un point de coordonnées strictement positives

1) (a) Pour tout $i \in [1, p]$ et tout $t \in \mathbb{R}$,

$$f_i'(t) = \langle e_i - f(t), Af(t) \rangle f_i(t)$$

et donc, pour $t \in \mathbb{R}$,

$$\begin{split} \left(\sum_{i=1}^{p} f_{i}\right)'(t) &= \sum_{i=1}^{p} \langle e_{i} - f(t), Af(t) \rangle f_{i}(t) = \langle \sum_{i=1}^{p} f_{i}(t) e_{i}, Af(t) \rangle - \left(\sum_{i=1}^{p} f_{i}(t)\right) \langle f(t), Af(t) \rangle \\ &= \left(1 - \sum_{i=1}^{p} f_{i}(t)\right) \langle f(t), Af(t) \rangle \end{split}$$

puis

$$\left(1 - \sum_{i=1}^{p} f_i\right)'(t) = -\langle f(t), Af(t)\rangle \left(1 - \sum_{i=1}^{p} f_i(t)\right).$$

Par suite, la fonction $x = 1 - \sum_{i=1}^{p} f_i$ vérifie x' = hx où pour tout réel t, $h(t) = -\langle f(t), Af(t) \rangle$. Puisque x(0) = 0 et que h est continue sur \mathbb{R} , la question II.2.b permet d'affirmer que x = 0 et donc, pour tout $t \in \mathbb{R}$, $\sum_{i=1}^{p} f_i(t) = 1$.

(b) Pour $i \in [1,p]$, soit $h_i : t \mapsto \langle e_i - f(t), Af(t) \rangle$. h_i est une fonction continue sur \mathbb{R} et $f_i' = h_i f_i$. De plus, $f_i(0) > 0$. D'après la question II.2.b, pour tout réel t, $f_i(t) > 0$. Puisque pour tout réel t, $\sum_{i=1}^p f_i(t) = 1$, on en déduit que pour tout $i \in [1,p]$ et tout $t \in \mathbb{R}$, $f_i(t) \in]0,1[$ (si $p \ge 2$). Donc, f est à valeurs dans Δ^0 .

2) (a) Soit $x \in \Delta^0$. Puisque x^* est aussi dans Δ^0 , d'après l'inégalité (7) de la question II.2.c,

$$Q(x) = \sum_{i=1}^p x_i^* \ln \left(\frac{x_i^*}{x_i}\right) \geqslant \frac{1}{2} \left(\sum_{i=1}^p |x_i^* - x_i|\right)^2 \geqslant 0.$$

(b) De plus, si $x \neq x^*$, $Q(x) \ge \frac{1}{2} \left(\sum_{i=1}^p |x_i^* - x_i| \right)^2 > 0$ et d'autre part,

$$Q(x^*) = \sum_{i=1}^{p} x_i^* \ln \left(\frac{x_i^*}{x_i^*} \right) = 0.$$

(c) Soit $i \in [1, p]$.

$$\mathrm{Si} \ x_i^* > x_i > 0, \ \ln \left(\frac{x_i^*}{x_i} \right) = \int_{x_i}^{x_i^*} \frac{dt}{t} \leqslant \int_{x_i}^{x_i^*} \frac{dt}{x_i} = \frac{1}{x_i} \left(x_i^* - x_i \right).$$

$$\mathrm{Si}\ 0 < x_i^* \leqslant x_i, -\ln\left(\frac{x_i^*}{x_i}\right) = \int_{x_i^*}^{x_i} \frac{dt}{t} \geqslant \int_{x_i^*}^{x_i} \frac{dt}{x_i} = \frac{1}{x_i} \left(x_i - x_i^*\right) \ \mathrm{et} \ \mathrm{encore} \ \mathrm{une} \ \mathrm{fois} \ \ln\left(\frac{x_i^*}{x_i}\right) \leqslant \frac{1}{x_i} \left(x_i^* - x_i\right).$$

Puisque chaque x_i^* est positif, on a dans tous les cas $x_i^* \ln \left(\frac{x_i^*}{x_i} \right) \leqslant \frac{x_i^*}{x_i} \left(x_i^* - x_i \right)$. En additionnant membre à membre ces inégalités, on obtient

$$Q(x) \leqslant \sum_{i=1}^{p} \frac{x_i^*}{x_i} (x_i^* - x_i).$$

Ensuite,

$$\begin{split} \sum_{i=1}^{p} \frac{x_{i}^{*}}{x_{i}} \left(x_{i}^{*} - x_{i} \right) & \leqslant \sum_{i=1}^{p} \frac{x_{i}^{*}}{x_{i}} | x_{i}^{*} - x_{i} | \\ & \leqslant \frac{1}{\min \left\{ x_{1}, \dots, x_{p} \right\}} \sum_{i=1}^{p} x_{i}^{*} | x_{i}^{*} - x_{i} | \\ & \leqslant \frac{1}{\min \left\{ x_{1}, \dots, x_{p} \right\}} \left(\sum_{i=1}^{p} \left(x_{i}^{*} \right)^{2} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{p} \left(x_{i}^{*} - x_{i} \right)^{2} \right)^{\frac{1}{2}} \left(\text{d'après l'inégalité de Cauchy-Schwarz} \right) \\ & \leqslant \frac{1}{\min \left\{ x_{1}, \dots, x_{p} \right\}} \left(\sum_{i=1}^{p} x_{i}^{*} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{p} \left(x_{i}^{*} - x_{i} \right)^{2} \right)^{\frac{1}{2}} \left(\text{car pour tout } i \in [\![1, p]\!], \; x_{i}^{*} \in [0, 1] \right) \\ & = \frac{1}{\min \left\{ x_{1}, \dots, x_{p} \right\}} \left(\sum_{i=1}^{p} \left(x_{i}^{*} - x_{i} \right)^{2} \right)^{\frac{1}{2}}. \end{split}$$

Finalement,

$$\forall x \in \Delta^{0}, \ Q(x) \leqslant \sum_{i=1}^{p} \frac{x_{i}^{*}}{x_{i}} (x_{i}^{*} - x_{i}) \leqslant \frac{1}{\min\{x_{1}, \dots, x_{p}\}} \left(\sum_{i=1}^{p} (x_{i}^{*} - x_{i})^{2} \right)^{\frac{1}{2}}.$$

3) (a) La fonction f est de classe C^1 sur $\mathbb R$ à valeurs dans Δ^0 (d'après la question IV.1) et Q est de classe C^1 sur Δ_0 à valeurs dans $\mathbb R$. Donc, $Q \circ f$ est de classe C^1 sur $\mathbb R$ à valeurs dans $\mathbb R$. De plus, pour tout réel t,

$$Q(f(t)) = \sum_{i=1}^{p} x_{i}^{*} \ln{(x_{i}^{*})} - \sum_{i=1}^{p} x_{i}^{*} \ln{(f_{i}(t))}$$

et donc

$$\begin{split} (Q \circ f)'(t) &= -\sum_{i=1}^p x_i^* \frac{f_i'(t)}{f_i(t)} = -\sum_{i=1}^p x_i^* \langle e_i - f(t), Af(t) \rangle \\ &= -\langle \sum_{i=1}^p x_i^* e_i, Af(t) \rangle + \left(\sum_{i=1}^p x_i^* \right) \langle f(t), Af(t) \rangle \\ &= -\langle x^*, Af(t) \rangle + \langle f(t), Af(t) \rangle = -\langle x^* - f(t), Af(t) \rangle. \end{split}$$

- (b) Par hypothèse, pour tout réel t, $\langle x^* f(t), Af(t) \rangle \ge 0$ (puisque f(t) est dans Δ^0) et donc pour tout réel t, $(Q \circ f)'(t) \le 0$. La fonction $Q \circ f$ est donc décroissante sur \mathbb{R} . De plus, la fonction $Q \circ f$ est minorée par 0 d'après la question IV.2.a. On en déduit que la fonction $Q \circ f$ a une limite en $+\infty$ qui est un réel ℓ positif ou nul.
- 4) (a) D'après la question IV.2.c, pour tout réel t,

$$0 \leqslant Q(f(t)) \leqslant \frac{1}{\min\{f_1(t), \dots, f_p(t)\}} \left(\sum_{i=1}^p (f_i(t) - x_i^*)^2 \right)^{\frac{1}{2}},$$

et donc, puisque la fonction $Q \circ f$ tend vers ℓ en décroissant,

$$\sum_{i=1}^p \left(f_i(t) - x_i^*\right)^2 \geqslant \left(\min\{f_1(t), \dots, f_p(t)\}\right)^2 \left(Q(f(t))\right)^2 \geqslant \epsilon^2 \ell^2.$$

(b) • Soit $\alpha > 0$. Soit $B = B_o\left(x^*, \sqrt{\alpha}\right)$. Vérifions que $\Delta \cap C_{\mathbb{R}^p}(B)$ est un compact de \mathbb{R}^p . Si $\Delta \cap C_{\mathbb{R}^p}(B) = \emptyset$, c'est immédiat. On suppose dorénavant $\Delta \cap C_{\mathbb{R}^p}(B) \neq \emptyset$.

B est un ouvert de \mathbb{R}^p et donc $C_{\mathbb{R}^p}(B)$ est un fermé de \mathbb{R}^p . D'autre part, l'application ϕ : $x \mapsto \sum_{i=1}^p x_i$ est continue sur

 \mathbb{R}^p car linéaire (et $\dim \mathbb{R}^p < +\infty$). Donc, $\Delta = \phi^{-1}\{1\}$ est un fermé de \mathbb{R}^p en tant qu'image réciproque d'un fermé de \mathbb{R}^p par une application continue. Finalement, $\Delta \cap C_{\mathbb{R}^p}(B)$ est un fermé de \mathbb{R}^p en tant qu'intersection de fermé de \mathbb{R}^p .

Pour tout x de Δ , $||x||_1 = \sum_{i=1}^p x_i = 1$ et donc Δ est une partie bornée de \mathbb{R}^p . Il en est de même de $\Delta \cap C_{\mathbb{R}^p}(B)$.

Finalement, $\Delta \cap C_{\mathbb{R}^p}(B)$ est une partie fermée et bornée de \mathbb{R}^p . Puisque \mathbb{R}^p est de dimension finie, le théorème de BOREL-LEBESGUE permet d'affirmer que $\Delta \cap C_{\mathbb{R}^p}(B)$ est un compact de \mathbb{R}^p .

• Soit $\alpha > 0$. Si $\Delta \cap C_{\mathbb{R}^p}(B) = \emptyset$, n'importe quel réel strictement positif β convient (puisque pour $x \in \Delta$, la proposition $\|x - x^*\|^2 \geqslant \alpha$ est toujours fausse).

Supposons dorénavant $\Delta \cap C_{\mathbb{R}^p}(B) \neq \emptyset$. La fonction $\psi: x \mapsto \langle x^* - x, Ax \rangle$ est polynomiale en les composantes de x et est donc continue sur \mathbb{R}^p , à valeurs dans \mathbb{R} . On en déduit que l'application ψ admet un minimum sur le compact $\Delta \cap C_{\mathbb{R}^p}(B)$. Par suite, il existe $\alpha \in \Delta \cap C_{\mathbb{R}^p}(B)$ tel que pour tout $x \in \Delta \cap C_{\mathbb{R}^p}(B)$, $\langle x^* - x, Ax \rangle \geqslant \langle x^* - \alpha, A\alpha \rangle$. Soit $\beta = \langle x^* - \alpha, A\alpha \rangle$. Par construction, $\alpha \neq x^*$ (car $\|\alpha - x^*\|^2 \geqslant \alpha > 0$) et donc $\beta > 0$.

On a montré qu'il existe un réel $\beta > 0$ tel que : $\forall x \in \Delta$, $\left(\left\|x - x^*\right\|^2 \geqslant \alpha \Rightarrow \left\langle x^* - x, Ax \right\rangle \geqslant \beta\right)$.

- (c) Pas trouvé.
- (d) Pas trouvé.
- 5) (a) Pas trouvé.
- (b) Pour tout réel t,

$$\begin{split} \left(f_{1}f_{2}f_{3}\right)'(t) &= f_{1}'(t)f_{2}(t)f_{3}(t) + f_{1}(t)f_{2}'(t)f_{3}(t) + f_{1}(t)f_{2}(t)f_{3}'(t) \\ &= \left(\langle e_{1} - f(t), Af(t) \rangle + \langle e_{2} - f(t), Af(t) \rangle + \langle e_{3} - f(t), Af(t) \rangle\right)f_{1}(t)f_{2}(t)f_{3}(t) \\ &= 3\langle \frac{1}{3}\left(e_{1} + e_{2} + e_{3}\right) - f(t), Af(t)\rangle f_{1}(t)f_{2}(t)f_{3}(t) \\ &= 3\langle x^{*} - f(t), Af(t)\rangle f_{1}(t)f_{2}(t)f_{3}(t) \geqslant 0. \end{split}$$

Donc, la fonction $f_1f_2f_3$ est croissante sur \mathbb{R} .

(c) Pas trouvé.